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Abstract-The stability of perfect bifurcational discrete dissipative systems under follower loads in
regions of existence/non-existence of adjacent equilibria is thoroughly re-examined in the light of
recent progress in nonlinear dynamics. A general theory for such nongradient systems described by
autonomous ordinary differential equations is developed. Conditions for the existence of adjacent
equilibria, the stability of precritical, critical and postcritical states, as well as for different types of
local bifurcations are established. Focusing attention on the interaction of geometric nonlinearities
and vanishing damping, new findings contradicting widely accepted results of the classical (linear)
analysis are discovered. In a smal1 region of adjacent equilibria near a compound branching point,
which is explicitly determined, an interaction of two consecutive postbuckling modes occurs related
to the fol1owing phenomena: in case of vanishing damping, loss of stability may occur via a
Hopf (dynamic) bifurcation prior to static (divergence) buckling. Moreover, the critical states of
divergence instability may be associated with a double zero Jacobian eigenvalue satisfying also the
conditions of a Hopf (local) bifurcation. Besides local (dynamic) bifurcations, global bifurcations
are also found. An example is used to illustrate the qualitative findings.

1. INTRODUCTION

There has been a large amount of work in the last 30 years on nonconservative systems
under follower loading losing their stability either by divergence (static instability) or by
flutter (dynamic instability). While the conditions for instability in the first case can be
obtained by using either the static or the kinetic criterion, in the second case they are
established only by employing the kinetic criterion (Bolotin, 1963; Herrmann and Bungay,
1964; Ziegler, 1968; Leipholtz, 1970; Plaut, 1976; Kounadis, 1977; Huseyin, 1978;
Kounadis, 1983). The intent of the paper is not to survey pertinent studies but to re-examine
the validity of various widely recognized findings based mainly on classical analyses in the
light of recent progress in nonlinear dynamics. To this end particular attention is paid to
the coupling effect of geometric nonlinearities and damping since the precise modelling of
any real structural system must include both these parameters.

This investigation deals with autonomous damped or undamped multi-parameter
discrete systems under partial follower loading which may lose their stability either by
flutter or by divergence associated with a branching point emanating from a trivial precritical
path. In a very recent paper referring to nonconservative systems with precritical defor­
mations it was shown (Kounadis, 1992a) that the static (limit point) critical load is always
higher than the dynamic buckling load regardless of the amount of damping and mass
distribution. Hence, the actual load-carrying capacity of the latter systems can be established
only by a nonlinear dynamic analysis.

The main objectives of this work, referring to perfect bifurcational systems without
precritical deformation, are to clarify the following questions:

(a) Are there Hopf or other types of local or global dynamic bifurcations in regions of
existence of adjacent equilibria?

(b) Is it possible for a system to lose its stability via flutter (dynamic instability) in a region
of adjacent equilibria?

(c) Are there regions of adjacent equilibria where the static criterion fails to predict the
actual (divergence) buckling load?
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(d) Does the mass distribution and amount of damping influence the critical load and
stability in regions of adjacent equilibria?

(e) When do the linearized equations of motion lead to results identical with those of the
original equations of motion?

A general qualitative theory is comprehensively developed leading to a successful
discussion of the above questions. In the framework of present considerations several new
findings are obtained as by-products which invalidate widely accepted results based on
classical stability analyses. The theory and its findings are illustrated using Ziegler's two­
degree-of-freedom model for which many numerical results are available.

The paper deals essentially with structural systems, and as such is not addressed to
scientists familiar with the rudiments of the mathematical theory of dynamical systems, but
mainly to structural engineers. Because of this, some care has been taken to include in the
text explanatory statements concerning certain basic concepts from the above theory for
the purpose of making the analysis more comprehensible.

2. MATHEMATICAL FORMULATION

Nongradient, geometrically perfect, discrete structural damped systems with trivial
precritical equilibrium paths are considered. For such a system under a partial follower
compressive force A (of constant magnitude) associated with a nonconservativeness par­
ameter 1], Lagrange equations of motion in terms of generalized displacements q, and
generalized velocities q, (i = I, ... , n) are given by

(I)

where the dots denote differentiation with respect to time t; K = (l/2)a,A,qj is the positive
definite function of the total kinetic energy; U = U(q,) is the positive definite function of
the strain energy, being a nonlinear analytic function of q,; F = (l/2)cijq,Qj is the non­
negative definite (viscous) dissipative function of Rayleigh; Q, = Q,(q,; 1] ; ).) designate
generalized, in general, nonpotential forces being nonlinear analytic functions of q, and 1],

and linear functions of A. Obviously, the tensor summation convention of Einstein is
adopted herein with summation ranging from I to n.

The loading A and the parameter '1 are the main control parameters for static and
dynamic bifurcations as well as for the stability of equilibria and limit cycles. The masses
and damping as possible control parameters are discussed too. Dynamic bifurcation is
defined as a sudden qualitative change of the system response occurring at a certain
value of a smoothly varying control parameter. From a view point of topology, dynamic
bifurcations correspond to those values of a control parameter for which the response of
the system becomes structurally unstable (Andronov and Pontryagin, 1937); namely the
phase portrait is changed to a topologically nonequivalent portrait by a smooth change of
the control parameter. It is also assumed that bifurcation points (static or dynamic) lie on
a trivial precritical equilibrium path.

The inclusion of damping, in addition to geometrical nonlinearities, allows a more
precise modelling of a real structural system. Internal friction, in the most general sense,
has as a consequence the existence of an attractor; that is, the existence of an asymptotic
limit of the solutions (as t --+ 00) such that the initial conditions (i.e. the point of departure)
have no direct influence. In mechanics, when friction entails continuous decrease of the
energy, the corresponding systems are called for this reason dissipative. Many phenomena
in nonlinear dynamics are the corollary of the interaction between geometrical nonlinearities
and damping, particularly in cases of nongradient systems. The undamped systems can also
be treated as the limiting case of systems with vanishing but nonzero damping.



Setting

Static stability analyses of nonconservative systems 2101

Yl=q" Y2=q2"",Yn=qn and Yn+l=q" Yn+2=q2'''''Y2n=qn, (2)

equations (1) for an initially at rest system can be written as follows

y = Y(y; A; 1]), YEE 2n , A,1]EE}
subject to yet = 0) = 0,

(3)

where y = (Yh"" Yzn)T is the state vector in the Euclidean space E 2n , being a continuous
function of t and Afor fixed 1], with T denoting transpose; Y = (Y1, . • , , y 2n )T is a nonlinear
vector-function which we assume satisfies the Lipschitz conditions for all t, Aand 1], at least
in the domain of interest. Due to the above assumptions Yi(t; A; 1]) belongs to the class of
functions C 2' This analysis could be extended to nonautonomous systems since the latter can
be transformed to autonomous systems with y E E 2n +1 by letting Yzn+ I = t and Y2n+' = 1.

According to Cauchy-Lipschitz theorem the solution of the initial-value problem
defined by eqn (3) satisfies the integral equation

yet; A; 1]) = c+ fa' Y[y(s; A; 1]), s] ds (4)

where C= yet = 0) = O. Clearly, the vector-function Y is not, in general, integrable.
However, an approximate solution of eqn (4) can be obtained via a Taylor's expansion of
Y around a known solution as will be shown below.

The existence of all possible equilibrium states yE can be established by setting the
L.H.S. of eqn (3) equal to zero, i.e.

(5)

whose equivalent form, if one sets Vi = aUjOqi - Qi' is equal to

(6)

In general, it is not possible to solve the nonlinear initial-value problem of eqns (3);
however, a great deal of qualitative information about the local behavior of the solution
can be achieved.

Taylor's expansion of eqn (3)
A local analysis refers to the study of the nature of the eigenvalues of the Jacobian

matrix evaluated at a known solution yO being either an equilibrium (singular) point yE or
a nonequilibrium (regular) point yR. For the study of a solution yO of eqn (3) we can
examine the motion in its neighborhood by superimposing the disturbance (vector) ~ to yO.
Inserting y = yO+~ into eqn (3) and using a Taylor's expansion around yO we get

(7)
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2 ° ( 0 0 )2 °(j Y i = ~I;;- +.. '+~2n-;'l - Y i ,

UY I UY2n

3 ° ( 0 0 )3 °(j Y i = ~l;;- +.. '+~2n~ Y;, etc.
UYI UY2n

(8)

(9)

where Y~ = Yy(Yo ; A; rf) = oY(yO ; A; rf)/oy is the Jacobian matrix evaluated at yO.
According to the Hartman-Grobman theorem and the stable manifold theorem (Perko,

1991) the behavior of solutions of the nonlinear eqn (3) near an equilibrium point which is
hyperbolic (i.e. none of the Jacobian eigenvalues has zero real part) is qualitatively deter­
mined by the behavior of the linear equation ~ = Y:~ near the origin. If all the eigenvalues
of Y; have negative (positive) real part the equilibrium point is called a sink (source) ; a
hyperbolic equilibrium point is called saddle if the Jacobian matrix Y; has at least one
eigenvalue with a positive real part and one with a negative real part. A hyperbolic
equilibrium point yE is either asymptotically stable (iff it is a sink) or unstable (iff it is either
a source or a saddle). Stable equilibrium points which are not asymptotically stable can
occur only at nonhyperbolic equilibrium points. A stable nonhyperbolic equilibrium point
is a center iff the Jacobian matrix has either a zero eigenvalue or a pair ofcomplex conjugate,
pure imaginary, eigenvalues. However, whether a nonhyperbolic equilibrium point is stable,
asymptotically stable or unstable is rather difficult to determine. One of the more useful
methods in answering this question is due to Liapunov.

As stated above, all sinks are asymptotically stable. However, not all asymptotically
stable equilibrium points are sinks. This is so since a nonhyperbolic equilibrium point can
be asymptotically stable (all eigenvalues have zero real parts or some of them have zero
real parts and the remaining eigenvalues are zero).

The Jacobian matrix Y/y; A; rf) can be written as a block matrix with four submatrices
of order n x n; that is (Kounadis, 1993)

(10)

where 0 and In are the zero and identity matrix; [J7ij] = [aij] - l[Vij] and [cij] = [aij] - I[e;;l.
The characteristic equation of the Jacobian matrix (10) is

(11 )

which after expansion yields

where

(12)

n 2n

a1 = -tr Y, = I Ca = I Pi'
i= I ;= 1

2n

a2n = det Yy = det [Vij] = TI Pi
i= 1

(13)

and Pi (i = 1, ... , 2n) are the Jacobian eigenvalues. From eqns (10) and (13) we get that
the rf buckling loads for which the determinant of the matrix [Vij] vanishes imply also the
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vanishing of the determinant of the Jacobian matrix. The coefficients ai (i = 1, ... , n) can
be determined by means of Bocher's formula (Gantmacher, 1959).

Using eqns (II) and (12) it is found that a2n is a function only of), and Yf, while al is
a function only of the damping coefficients. Finally, a2, a3,' .. , a2"~ 1 are functions of
damping coefficients, Aand Yf. The characteristic eqn (12) can also be written as follows

n

f(p) = n (p2+Bip+Ci) = 0
i= I

with roots of each factor - O.5Bi ±J (O.SBi ) 2 - Ci }

n n n

where Bi=al=i~lcii' and I~Ci=a2n().;Yf)·

(14)

(15)

3. LOCAL BIFURCATIONS

Using a local (linear) analysis one can always establish static bifurcations and in some
cases local dynamic bifurcations. Moreover, one can discuss stability ofequilibria (excluding
the case of critical states) by studying the nature of Jacobian eigenvalues. However, there
are dynamic bifurcations (associated with limit cycles) which can be explored by using only
a global (nonlinear) dynamic analysis. The determination and stability ofglobal bifurcations
is achieved either numerically or with the aid of eqn (4) in which the integrand has been
replaced by two or three terms in the expansion (7).

Static bifurcations
For bifurcational systems with trivial fundamental paths, eqn (5) is satisfied by the

zero solution, yE == 0, regardless of the value of ). and Yf ; i.e.

Y(O;).;'1) = o. (16)

At the critical value, ). = ).c (depending on '1), the system also exhibits another solution
different from zero, yE :/; 0; namely it displays a bifurcation. The boundary between the
regions of existence and nonexistence of adjacent equilibria corresponds to a certain value
of Yf, say '1 = '10, which is determined as follows: equating to zero the determinant of the
Jacobian matrix evaluated at yE = 0, we obtain the buckling (divergence) equation

which due to eqn (6) yields det [VuJ = O.
From eqn (17) one can obtain, at least implicitly, the relationship

Yf =Yf().C).

(17)

(18)

Following the procedure outlined by Kounadis (1983) the extreme value of '1, i.e. '1 = '10,
is determined by the condition

dn '(1dA = '1 II") = 0 or a2n). = IYy,,(O; )."; '1)1 = o. (19)

Let Ao be the smallest positive root (critical load) of eqns (16) and (19) for which
'1(Ao) = '10' Clearly '10 defines a bound in the region of existence of adjacent equilibria; if



2104 A. N. KOUNADIS

(a) (b)
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I
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Region of non-existance of I Region of existance of

adjacent equilibria I adjacent equilibria

I
Limit cycles I A~2) -2nd buckling load
(Hopf bifurcation) I \ __ - A

. . } at least a pair of I , .,.. -
CrHlcal pure imaginary I " ."
state eigenvalues I /

.' One zero eigenvalue
A.~ - - - - - - - - - 0 along AOB

/ I (static bifurcatlon)
Compound I

branching point : /

I c B
I A(I) -1st buckling load

I

I

o
11

I
Region adjacent IRegion of non·existance of

equilibria I adjacent equilibria

c . 1""--
I A(2) -2nd buckling load I Limit cycles

A - I (Hopf bifurcation)

I . . } at least a pair of
" 1 Cntlcal pure imaginary

One zero eigenvalue ,I state eigenvalues

along AOB 10

(static bifurcation) Compound
I branching point
I
I

I
I

B \. I

A~ I) -I st buckling load I
I

Fig. I. The compound branching point 0 (An, '10), boundary between the regions of existence and
nonexistence of adjacent equilibria. Point 0 in the curve AOB may be either a maximum (a) or a

minimum (b).

1'/0 is a maximum [Fig. 1(a)] of the function 1'/ = 1'/(AC
), adjacent equilibria exist for 1'/ < 1'/0,

while if 1'/0 is a minimum [Fig. l(b)] of 1'/ = 1'/(A'), adjacent equilibria exist for 1'/ > 1'/0; i.e.
outside these regions adjacent equilibria do not exist. Since a2n = a2n}. = 0 at (Ao,1'/o) the
latter is a coincident (double) point resulting from the coalescence of two consecutive
buckling curves IJ vs ),C among which the lower corresponds to the smallest (critical) load.

For the precritical states of divergence instability the following observations are worth
making regarding eqn (II) or eqn (12). If [ai;l, [cd and [Vij] are non-negative definite
matrices, and either [aij] or [Vij] is positive definite, then eqn (12) has no roots with positive
real parts (Bellman, 1970). Recall that [aij] is always a positive definite matrix, while [Vij]
is positive definite in case of a conservative loading when A < A( I)' where A( I) is the smallest
critical (buckling) load. If [aij], [eij] and [Vij] are positive definite matrices, all eigenvalues
have negative real parts and hence the Jacobian is a stability (or stable) matrix (Kounadis,
1993).

In case of a follower loading, the matrix [Vul is asymmetric and can always be factored
into a product of two symmetric matrices. If one of these symmetric matrices is positive
definite, [Vij] is called symmetrizable and the dynamic system associated with it behaves as
if it were symmetric (Inman, 1983). For a nondissipative system ([ciJ = 0) it was shown
that all the Jacobian eigenvalues associated with eqn (11) are purely imaginary if [Vij] is
symmetrizable (Kounadis, 1992b). However, if [ciJ #- 0 it is not always possible to find a
positive definite transformation matrix which renders both matrices [cu] and [Vij] sym­
metrizable; a fact, of course, which does not imply that the precritical states are not
asymptotically stable.

Among the more efficient criteria for determining whether all Jacobian eigenvalues
have negative real parts are those of Routh-Hurwitz. According to these criteria a necessary
condition in order that all eigenvalues have negative real parts is ai > 0 (for all i), while a
sufficient condition is all the Routh-Hurwitz determinants Ai of even or odd order to be
positive. Moreover, a necessary and sufficient condition for all the eigenvalues to lie on the
left-hand side of the complex plane is Ai> 0 (for all i). In this case the characteristic
polynomial .r(p) = 0 has complex conjugate eigenvalues of the form

Pi = l-ti+Vj, (j = J=I) (20)

where I-ti < 0 and Vi > 0 (i = 1, ... , n). Due to relation (14) it follows
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lli = -0.5Bi, Vi = JCi -(0.5Bi)2 with Bi > 0, Ci > (0.5BY. (21)

The static (divergence) instability associated with a static bifurcation occurs when the
Jacobian or matrix [Vij] becomes singular; Le. when due to eqns (15) one at least of C;, say
Cb becomes zero. Then, from the second of eqns (15) it is deduced that the (corresponding
to Ck = 0) pair of complex conjugate eigenvalues yields a zero eigenvalue Pk = 0 and a
negative eigenvalue (equal to - Bk ).

Clearly, as ..1, increases from zero the trivial state is asymptotically stable forA < ..1,( I)
(where ..1,( I) is the smallest critical buckling load) if all the Routh-Hurwitz determinants Ai
are positive. At the critical (divergence) state corresponding to ).(1) one Jacobian eigenvalue
becomes zero, another (real) negative, and the remaining are complex conjugate with
negative real parts. The system may be stable or unstable but locally. Indeed local instability
(stability) does not imply necessarily global instability (stability) which may be affected
decisively by the presence of nonlinear terms governing the long-term response of the
system. The (global) stability or instability can only be established by including higher
order terms in the Taylor's expansion (La Salle and Lefschetz, 1961), since stability criteria
for linearized models are concerned with local properties rather than global behavior. For
..1, slightly greater than ..1,(1)' the determinant of [Vul (whose elements are linear functions of
..1,) become negative (in cases of distinct buckling loads). This yields Ck < 0, and due to
relations (15), (20) and (21), the Jacobian matrix has one positive and one negative
eigenvalue, while all the remaining eigenvalues are complex conjugate with negative real
parts, namely, the static (divergence) instability takes place when at least one eigenvalue P
becomes positive after passing through zero at ..1, = ..1,(1) (where the Jacobian becomes
singular). Thus, forA < ..1,(1) the trivial state is a hyperbolic equilibrium point (sink) with
all Jacobian eigenvalues complex conjugate with negative real parts. At ..1, = ..1,(1) a pair of
these complex eigenvalues is transformed to a zero eigenvalue (the trivial state becomes a
nonhyperbolic equilibrium point) and to a negative eigenvalue, while forA > A(l) the zero
eigenvalue becomes positive, another eigenvalue is negative, whereas all the remaining are
complex conjugate with negative real parts. Therefore, the trivial state for A> A(I) (having
a positive eigenvalue) is locally unstable. However, the system may be globally stable
exhibiting a point attractor response (after a dynamic jumping to a stable postcritical
equilibrium state). The dynamic global stability of the critical and postcritical response
depends on the stability of the static bifurcation point.

It is worth observing that the singularity of the Jacobian at ..1.(1) (and the transformation
of a hyperbolic to a nonhyperbolic equilibrium point) does not imply that the trivial state
is associated with a static bifurcation. This is so because the Jacobian becomes also singular
when a conjugate pair of eigenvalues coincides at the origin of the p-plane and proceeds in
opposite directions on the real axis (Huseyin, 1986). In view of this a static bifurcation is
characterized by a zero eigenvalue at ..1,= ..1.(1) which for A slightly greater than A= ..1,(1)
becomes positive. Note also that the double critical point (Ao,1]o) does not satisfy the
foregoing properties of a static bifurcation although it is an equilibrium point. This is so
because the sign of a2n (being a second degree polynomial of AC

) does not change for
A> ..1,(1)' remaining always positive for ..1,"# ..1,(1)' Thus, for 1] = 1]0 and A< A(l) all eigenvalues
are complex conjugate with negative real parts. At ..1, = ..1,(1) = AO one pair of complex
conjugate eigenvalues is transformed to a zero and to a negative eigenvalue (while all the
remaining are complex conjugate). At A> ..1,0 the last two eigenvalues are transformed to
a pair of complex conjugate eigenvalues with negative real parts. The important conclusion
is that the double critical point (..1,0,1]0) does not behave as an equilibrium point; it is a
hybrid or pseudo-equilibrium point. This new finding revises a pertinent aspect for non­
gradient but nondissipative (nongeneric) systems (Mandady and Huseyin, 1980).

If Bk = 0 and Ck = 0 then due to eqn (14) (the remaining eigenvalues are complex
conjugate with negative real parts) the Jacobian has a double zero eigenvalue, i.e.

(22)

Since a2n = a2n(A, 1]) and a2n- 1 = a2n- I(Cij , A, 1]) one can determine numerically the extreme
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values of 11 (one of which is 110) defining the region of variation of 11 (along the length of
the common curve 11 VS,,{c of two consecutive buckling loads coinciding at 110) for which the
Jacobian has a double zero eigenvalue. If the Jacobian is a defective matrix (i.e. being not
similar to a diagonal matrix) then the number oflinearly independent eigenvectors is 2n - I
(if the 2n - 2 eigenvalues are distinct). Thus, there corresponds one eigenvector to the
double zero eigenvalue occurring along the above two consecutive buckling curves (11 vs
k). Since one eigenvector corresponds to two consecutive critical (divergence) states (among
which the lowest corresponds to the smallest static buckling load) it is reasonable to consider
that the corresponding postbuckling modes are not independent of each other [Fig. 2(a, b)].
At the critical states of divergence instability associated with a double zero eigenvalue the
system exhibits a limit cycle response. However, regardless of the amount of damping, the
system for loads much higher than the smallest critical (divergence) load exhibits a point
attractor response in case of a stable postbuckling equilibrium path (Kounadis, I992a).
For much higher loads there is (as stated above) an interaction of postbuckling modes
subsequently causing an interaction of static and dynamic bifurcations (Yu and Huseyin,
1988) which can be studied only by using a nonlinear dynamic analysis.

The study of critical (divergence) states with multiple eigenvalues is considerably
facilitated by transforming the singular Jacobian matrix to Jordan canonical form. For
simplicity we can consider a four-dimensional state space (derived e.g. from higher dimen­
sions after pertinent reduction via the Liapunov-Schmidt, center manifold or spitting lemma
technique). In case of a double zero eigenvalue (a3 = a4 = 0) the characteristic equation,
p2+a1P+a2 = 0, yields for small damping [implying a2 > (a 1/2) 2] a pair of complex con­
jugate roots J1 +jv, where J1 = - 0.5a 1and v = (a2 - aT /4) 1(2. At the trivial state (0; O;,,{; 11)
equation ~ = Yy~ via the transformation of variables ~ T' yields

,= J' (23)

where

[~
I 0

~]J =T-1YyT = ° 0
(24)

0 J1

0 -v

with J1 and v given above; Yy is given in eqn (l0), in which V11 V22 V21 V12·
The nonsingular transformation matrix T with the aid of which the Jacobian matrix

is transformed to Jordan form is evaluated as follows.

<a)

::~:ranc~hingA. (loading)

).

Independent~ postbuckling paths
"-C

1st branching point : (2)

I

o

(b)

2nd branching point

"-
,,-c(2)

1st branching point

c,",
"-(I)

o

A (loading)

Postbuc:kling path
I Common for 1(1).1(2)

Displacement qj Displacement qj

Fig. 2. (a) Independent postbuckling equilibrium paths corresponding to the first and second
buckling loads All) and A{,); and (b) one postbuckling path common for both All) and A{,).
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The column matrices T I' T 2, T 3 and T 4 of the matrix T are the eigenvectors of the
Jacobian Yy(O, 0, A, 11) corresponding to the eigenvalues: PI:= 0, P2 = 0, P3 = p,+jv and
P4 = p,- jv, respectively. With the aid of equations

YyT I =P1T1 =0 }

YyT2=P2T2+TI =T 1

we find T I = [1, d, 0, Oy and T 2 = [1, e, 1, dY where

Finally by virtue of equations

(Yy - p,I)T 3+vT4 = O}
(Yy -p,I)T4 -vT 3 = 0

we obtain

T 3 = [l,f,p,,(p,f-vg)Y and T 4 = [O,g,v,(vf+/lg)y

where

f= ~ [(V12 +p,CI2)(V2_p,2 -P,CII - VII) -v2cd2p,+CI1)]

9 = - ~ [(V12 +p,CI2)(2V/l+VCI d+vCI2(V2_p,2_p,CIl- V lI )]

D (V- ~ )2+ 2~2
:= 12 + /lC 12 V CJ 2

The solution of eqn (23) is

where

[e
tJo 0J [0 IJ [p, vJe

tJ
= 0 etJ , , J o= 0 0' J 1 = -v fl'

Given that

[
COS vt sin vtJetJo = l+tJo, e'J, = eJU •
-sm vt cos vt

eqn (29), due to eqns (30) and (31); becomes

(25)

(26)

(27)

(28)

(29)

(30)

(31)

[

' I(t)] [1 t 0
'2(t) 0 1 0

'3(t) = 0 0 e'lt cos vt

(4(t) 0 0 _elu sin vt

o ] ['1(0)]o '2(0)

eP' sin vt '3(0)

e"'cosvt (4(0)

(32)

The Jacobian matrix Yy(O, O,..t, 17) with a double zero eigenvalue, being defective (since
it is not similar to a diagonal matrix) and nonderogatory (the double zero eigenvalue is
associated with one Jordan block), has three linearly independent eigenvectors. Equation
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(23), due to eqn (32), implies a divergent motion and hence the critical (trivial) state is
unstable. It should be clarified that while the linearized model is unstable, the original
nonlinear one might be stable since its long-term behavior depends on higher order terms
in the Taylor's expansion (see next section).

Dynamic bifurcations
As stated above, via a local dynamic analysis one can predict in some cases dynamic

(local) bifurcations. A common type of dynamic bifurcation is the Hopf bifurcation,
occurring when the characteristic equation f(p) = 0 evaluated at yE = 0 has at least one
pair of pure imaginary eigenvalues, while the rest of the eigenvalues are complex conjugate
with negative real parts. The critical behavior is thus associated with the vanishing of the
real part of at least one pair of complex eigenvalues. This, due to relation (15), implies that
one of B; becomes zero, say BJ = 0 and hence the purely imaginary eigenvalues are ±J~.
Since all B; (i = 1, ... , n), being functions of A, are assumed negative at the precritical states
and at the critical state at least one B; becomes zero, BJ = 0, for a load A slightly greater
than the critical one (since dBddA =f 0), BJ becomes positive. This implies instability of the
trivial state. The system exhibits an oscillatory motion (limit cycles) which may be (globally)
stable or unstable (Nemytskii and Stepanov, 1960). The critical state associated with a
Hopf bifurcation is established by setting equal to zero the Routh-Hurwitz determinant
<1 211 _ j, which due to Orlando's formula (Gantmacher, 1959) is given by

I ..... 2n

<1 211 - 1 = (_1)"(2" I) Il (p;+ pJ
i<j

(33)

which implies that the sum of at least two eigenvalues off(p) 0 is zero.
Since attention is focused on the existence of dynamic bifurcations in the region of

adjacent equilibria [Fig. (la, b)] occurring prior to divergence (i.e. a 2n > 0) the cases of a
pair of opposite eigenvalues or of a double zero eigenvalue are excluded. The last case will
be considered thereafter as a special case. Therefore, eqn (33) implies that f(p) = 0 has at
least one pair of pure imaginary eigenvalues.

Clearly, eqn (33), after expansion of 11 211 - j, leads to an algebraic polynomial of nth
degree with respect to A.. If the minimum A, being equal to Am is such that )'cr < A( I), where
A(I) is the minimum critical (divergence) buckling load (resulting from a211 = 0), then
dynamic instability takes place prior to static (divergence) instability. The occurrence of
such a phenomenon, very important for structural design purposes, contradicts the widely
accepted practice of establishing divergence buckling loads of nonconservative systems
under follower loads using static analyses. From the structure of the Routh-Hurwitz
determinant it is apparent that eqn (33) holds also when a211 i = a211 = O. In such a case
the critical dynamic load (associated with a Hopfbifurcation) coincides with a critical static
(divergence) buckling load (associated with a double zero eigenvalue) ; i.e. Acr = A( I)' Hence,
a dynamic Hopf bifurcation with Acr < A(I) may occur for suitable values of damping
coefficients in a small region ofadjacent equilibria in the neighborhood of the double critical
(divergence) point, being defined by 1]0 ~ 1] ~ 1] j, where 1] 1 is the upper bound of 1] up to
which the Jacobian has a double zero eigenvalue.

Considering the variation of A' vs 1] to the left and right of the point (At, 1]0), being the
boundary between divergence and flutter (oscillatory) instability, the following observation
is worth making: between divergence (static) and flutter (dynamic) critical load there is
always a discontinuity at the point ()"t,1]o) if the flutter load obtained from eqn (33)
corresponds to a211 =f O. This load may be higher or lower than the divergence buckling load
depending on the damping coefficients. This contradicts the corresponding finding of the
classical (linear) analysis according to which the flutter critical load is always greater than
the corresponding divergence buckling load. On the other hand if 0211 = 0 then eqn (33)
also yields 0211-1 = O. Hence, in case of a double zero eigenvalue at (At,1]o) there is no
discontinuity between the corresponding divergence and flutter critical loads. This finding
(occurring for suitable damping coefficients) also contradicts the well-known result of the
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classical (linear) analysis implying that there is always a discontinuity between the diver­
gence and flutter critical loads at (A~, '10)'

4. GLOBAL BIFURCAnONS

Global bifurcations can be established by using only a nonlinear (global) analysis. For
instance, dynamic bifurcations with trajectories passing through (or approaching) saddle
points or cases where closed orbits become nonhyperbolic (at least one characteristic
multiplier has unit modulus) can be detected only by using a global (nonlinear) analysis
(Peixoto, 1959). Such an analysis is also the only safe way for exploring chaotic or chaos­
like (Kounadis, 1991) phenomena appearing sometimes at a large time.

Are there dynamic global bifurcations occurring before static (divergence) buckling?
To the knowledge of the author there are no pertinent criteria answering this important
question as in the case of a Hopf (local) bifurcation presented above.

The importance ofa global dynamic analysis lies mainly in the fact that by this analysis
one can readily establish the stability of equilibria and limit cycles in the precritical, critical
and postcritical stages. The stability of equilibria is the simplest case if dynamic instability
does not occur prior to static (divergence) buckling. The stability of the critical and
precritical state depends on the nature of the static stability of the bifurcation point. An
interesting treatment on this topic was presented by Plaut (1976). If the nongradient damped
system displays a stable branching point, it exhibits a point attractor (as in the case of
conservative damped systems). If the branching point is unstable the system is subjected to
dynamic buckling (i.e. a very small change in the load produces a large change in the
response).

However, the stability of limit cycles for local (e.g. Hopf) or global bifurcations can
be accomplished only via a nonlinear (global) analysis; e.g. via perturbation schemes, the
average or the intrinsic harmonic balancing technique (Atadan and Huseyin, 1985) or
approximate analytic methods (Kounadis, 1992c). These methods are usually adjusted for
problems in two dimensions obtained from problems of higher order after reduction of
their dimension via the Liapunov-Schmidt technique, and mainly by the local techniques
of the center manifold (Carr, 1981), of the normal forms (Perko, 1991) and the splitting
lemma (Gilmore, 1981). The global analysis herein is performed through numerical simu­
lation (via a Runge-Kutta numerical scheme) or by using the above approximate analytic
technique.

5. NUMERICAL EXAMPLE

Consider, as example, the Ziegler two-degree-of-freedom nonlinear damped model
shown in Fig. 3. The model, under a partial follower force at its tip with '1 the non­
conservativeness parameter, is governed by (Kounadis, 1992a)

(1 +m)li1+0.2cos (0 1-02)+8~ sin (0 1-02) +Cl1 81+C1282+ oV = 0
00 1

0·2+fjl cos (0 1-02)-8? sin (0 1 -02)+CI281 +c2282+ oV = 0 (34)
00 2

where Cll = b l +b2, Cl2 = -C22 = -b2with b l and b2the linear viscous coefficients of the
two springs; m = ml/m2is the mass ratio, while

av _ 0 2 2 3 3'
00

1
-2 1-02+15101-152(01-02) +YIOl+Y2(01-02) -Asm[01+('1- 1)02l

oV 2 3'
00

2
= -0 1+02+15 2(0 1-02) -Y2(01 -02) -A sm '102 (35)

with '1 varying from '1 = 0 (tangential load) to '1 = I (conservative load).

SAS 31: 15-G
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Fig. 3. Ziegler's (1968) two-degree-of-freedom model under partial follower load.

For 115 11+ l15zl =P 0 and Yl = Y2 = 0 (quadratic model) the system exhibits an asym­
metric bifurcation point provided that 15 I + 15 z(1-).J 3 =p 0 (Kounadis, 1994), while for
IYll + IYzl =p 0 and 15 1 = 15 z= 0 (cubic model) it exhibits a symmetric bifurcation point,
whose stability depends on Y I and Yz. Setting according to eqns (2)

(36)

eqns (35) are written as follows

(37)

I Z Z av av }
-lY3sin2(YI-Yz)-Y4sin(YI-Yz)--a +-a COS(YI-YZ)

YI Y2

The three terms on the R.H.S. of eqn (7) evaluated at the trivial equilibrium state
(8 1 = 8z = 0) are
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0 0 I 0 ~I

0 0 0 I ~2

OyE= y;~=
2-3 2-2 hi +2b2 2b2

'3m m m m

m+3-2 2(1+mn)-m-2 b l +(m+2)h 2 -b2(m+2)
~4m m m m

(39)

where

I >:2yE I >:3yE _ [00 1>:2yE 1>:3y 1>:2y 1>:3y]T2! u + 3! u -" 2U 3 + 6U 3,2U 4 + 6u 4 (40)

An iteration scheme is successfully employed (Kounadis, 1992c) by replacing the
R.H.S. of eqn (3) by its three term Taylor's expansion given in eqns (39), (40) and (41).
By this analytic approximate technique or via numerical simulation we establish the stability
of critical states associated either with a double zero eigenvalue or with limit cycles.

The characteristic equation of the Jacobian matrix of eqn (39) is

(42)

where
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(43)

where

Since the damping coefficients b I and b 2 are always (small) positive quantities, a I > O.
Application of relation (15) gives

PI.2 = - ~.~ ±N~Ch P'.4 = - ~2 ±J¥-C2 )

B,+B,~a,>O, C,+C,+B,B,~a" C,B,+C,B,~a" C,C,~a. (44)

The boundary between the regions of existence and nonexistence of adjacent equilibria
is determined by solving the system of eqns (17) and (19) ; i.e. a4 = da4/dA = 0 from which
we get the double (coincident) critical point

1]0 = t ~ c 3
.leo = 2' (45)

Namely for 4/9 < 1] < 1 the model displays a divergence instability, while for 0 < 1] < 4/9
there are no adjacent equilibria and the model exhibits a limit cycle (stable or unstable)
response. The latter region is also known as region of flutter (dynamic) instability. The first
and second static (divergence) buckling loads A(I) and A(2) are obtained through the equation
a4 = 0, which yields

(46)

The dynamic (flutter) critical load Aer is obtained through the equation

(47)

Note that eqn (47) can also be obtained by inserting into eqn (42) P = ± iv [v = real,
i = (-1) 11

2
] and thereafter eliminating v. Equation (47) due to eqns (43) leads to an

algebraic equation of second degree in Ain the form

(48)

Although eqn (48) holds for 0 < 1] < 4/9 the important question which will be discussed
below is whether this equation is also valid in some region of adjacent equilibria. From eqn
(48) it is clear that Aer depends on both mass ratio and damping, contrary to the case of
static (divergence) instability where these parameters have no effect on the static buckling
load AC

• According to the local analysis the necessary and sufficient conditions for the
stability of precritical states is ai > 0 (i = 1, ... ,4) and!:! 3 > O. For a double zero eigenvalue
we have a3 = a4 = 0 [see eqns (22)] which due to (43) yields

1+ 2b (b+ 1)2
A

C

=l+-b' 1] = (6+2)(2b+ 1)
(49)

where b = b,/b 2 • Apparently for b --> 0 we get AC = 1, while for b --> 00 we obtain A' = 2. In
both cases 1] = 1/2. Note that ), coincides with the first buckling load A( l) if b < 1, and with
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Fig. 4. The small region of adjacent equilibria (4/9 < tI < 0.5) in the neighborhood of the point 0,
where a double zero eigenvalue may occur for a suitable damping ratio b,

the second buckling load A('2) if b > I (see Fig. 4). Namely, in the small region of adjacent
equilibria defined by 4/9 < '1 < 1/2 (in the neighborhood of the double critical point) the
Jacobian has a double zero eigenvalue along the curve of the first and second static
(divergence) buckling load. It can be shown that regardless of the value of '1 (within the
above region) the Jacobian matrix cannot be put into diagonal form; hence it is a defective
matrix which implies that one eigenvector corresponds to both (zero) eigenvalues. For
instance for a Hookean material (D I = D2 = YI = Y2 = 0) with '1 = 0.48 (implying A(l) =
1.09176 and A(2) = 1.90285) using eqn (49) for AC = A(I) we get b = bdb2= 0.101. For
structural (small) damping (e.g. b2, b l < 0.08) and mass ratio m > 0.01 it is deduced that
af!4 < a2 which implies that the Jacobian matrix in addition to the double zero eigenvalue
has a pair of complex conjugate roots P3,4 = J.L+iv, where J.L = -ad2 < 0 and v =
(a2-af!4) 1/2. Then, either C 1 = B[ = 0 or C2 = B2= O. By virtue of the transformation
matrix Twith columns given in eqns (25-28) we find that the matrix T-1YyT has the form of
the Jordan matrix J given in eqn (24). In this region (4/9 < '1 < 1/2), where one eigenvector
corresponds to a double zero eigenvalue, there exists only one postbuckling path passing
through the first and second branching point as shown in Fig. 5. Above a certain level of
the load A (higher than A( I) but lower than A(2)) the model does not exhibit a point attractor

(as it does for All) < A < 1); it experiences a stable limit cycle (Fig. 6). The stability of the
postcriticallimit cycle response has been established numerically via the analytic approxi­
mate technique mentioned above [eqns (4), (7) and (40)] as well as by using the center
manifold technique (Jin and Matzuzaki, 1988),

Note that for b = b1/b 2 = I the double critical point (Aa, '10), due to eqns (43) and
(45), is associated with a double zero eigenvalue (a3 = a4 = 0). Given that at this point

(50)

it is clear that a4 remains always positive. Another important finding is that a3 = a4 = 0
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Elutic material
tl =0.48, 01 =62 =11 =12 =()

POltbucklins path

2nd branching point

1.9082 '"

lst branchinS point

1.0918"'"

o

(rad)

Fig. 5. One postbuckling equilibrium path (passing through the first and second branching point)
for rJ = 0.48 E [4/9, 0.5].

implies also ~3 = 0 (Hopf bifurcation); that is for b = 1 there is no discontinuity of the
critical load at this point as we pass from static (divergence) to dynamic (flutter) instability.
This result holds for vanishing (but nonzero) damping with b I = b 2 ; that is when the model
is practically undamped. This contradicts the well-known result of the classical (linear)
analysis according to which there is always a discontinuity in the critical load of the
undamped model at (A.b,11o). Hence, this point does not have the characteristics of the
divergence instability (one eigenvalue has positive real part for A> A(I), being also a
dynamic bifurcation. Moreover, note that all static (divergence) critical states with a double
zero eigenvalue (a3 = a4 = 0) are also Hopf bifurcations since for these equilibrium states
~3 = O. This Hopfbifurcation is independent of the mass ratio.

Stable limit cycle

Fig. 6. Phase plane (Ob ( 1) ofa damped (b i = b 2 = 0.1) system with rJ = 0.445, 1', = 1'2 = I' 0 and
,)1 =,)2 ,) =0.
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We have established above that two types of dynamic bifurcations may occur in the
small region of adjacent equilibria defined by 4/9 < 11 < 1/2, where there exists a double

•
zero eigenvalue. The first type of dynamic bifurcation occurs for a certain A= A > A(l)
(associated with stable limit cycles), while the second one is a dynamic bifurcation occurring
at A= A(l) (or A(2)'

Equation (47) yields the following equation of Hopf bifurcations

{(b+m+4)[b 1b2+m+5-A(2+m11)] -m[b(I-A11)+ 1-2A11]}[b(I-A11)+ 1- 2A11]

-(b+m+4)2(11A2-3Al1+ 1) = 0, (b = btlb2). (51)

Equation (51) for b = 1 and m = 2 leads to

(52)

which for 1'/ = 0 yields

For 11 =F 0 and vanishing damping eqn (51) yields

14+ 211 -)196+ 343 - 980112

(2411 - 7)11

(53)

(54)

which is valid for 0 < 1'/ < 0.65523 since 1'/ varies between 0 and 1. Figure 7 shows the
variation of Acr vs 11(>0) for m = 2 and b = 2, 1,0.4 and zero. Note that all curves Acr vs 1'/
which correspond to m = 2 and various values of the damping ratio b pass through the
point (A = 2, 11 0.625). Indeed, eqn (51) for m = 2, being equal to

a:: 1-11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4.0 4.0

1'-- A~ { h2 - 0
3.5 / 1'1 m. bI arbit. 3.5

I /
I' /3.0 A(2) ),/ 3.0

L I
/' I~

2.5 m=2 2.5

A
bl'b2-O

'"2.0 2.0
b=2 1.19

1.5 1.5
1.46

1.0 b=0.4 1.0
0.99
0.81

O.S b=O O.S

It 1(.J

0 0
1.0 0.9 0.8 0.1 O.S 10.4 0.3 0.2 0.1 0

9

11

Fig. 7. Loci of Hopf bifurcations of Ziegler's (1968) model with vanishing damping for m = 2,
b = 2, 1,0.4 and O.
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(iI.tI-2)(A-2)b2+(33-14A-22AtI+4A2t1+8A2t12)b+4+20AtI-12A+ 16A2t12-12t1A2 = 0

(55)

is satisfied for A = 2 and tI = 0.625 regardless of the damping ratio b. The last case (b! = 0,
b2 = arbitrary) gives the minimum Acr since this load decreases with decreasing b. From
these curves, being the loci of Hopf (dynamic) bifurcations, the following very important
(for structural design purposes) conclusions are drawn. For vanishing damping, bJ, b 2 --+ 0
(practically undamped system), there exists a region of existence of adjacent equilibria (in
the neighborhood of the double critical point) where dynamic instability may occur prior
to static (divergence) buckling. The maximum width of this region (starting from tlo)
corresponds to the case b = 0 (b l = 0, b2 = arbitrary). Due to eqn (51) and a4 = 0 we find
that all curves ACT vs tI corresponding to various m intersect the curve A(l) vs tI at the point
A(!) = 1 and til = 0.5 (Fig. 8). Namely, in this region of adjacent equilibria (4/9 < tI < 0.5)
the static stability analyses fail to predict the actual critical load when b = 0 and b 2 --+ 0
(practically undamped system). However, this model loses its stability through divergence
if the corresponding to the ratio b curve (51) intersects the curve A( I) VS tI at ). > 1. Therefore,
ifb ~ 1 the static criterion is always applicable for tI ~ 4/9, while for b < 1and 4/9 ~ tI ~ 0.5
this criterion may fail to predict the actual critical load.

One can further discuss the effect of the mass ratio m on the curve ACT vs tI E [4/9,0.5]
for the case b = 0, b 2 --+ O. Then one can obtain

. 2
A = ._~---~--

cr m +4 - 2mtl- 4t1 .
(56)

From the corresponding to various m curves we observe that, as tI varies from tlo = 4/9
to til = 0.5, the maximum Acr is 1 (common for all curves), while the minimum Acr (occurring
at tlo = 4/9) decreases as m increases; for m --+ 00 we get min ACT --+ 0 (see Fig. 8). In

a = 1-1\
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Fig. 8. Loci of Hopf bifurcations of Ziegler's (1968) model for various mass ratios m and b = 0,
b, ..... 0 (vanishing damping).
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conclusion, the region ofadjacent equilibria below the curve l( l) vs 11 E [4j9, 0.5] is a domain
of dynamic instability (related to Hopf bifurcations) occurring before static instability.

Note also that the dynamic critical load lcr depends on the mass and damping ratios
m and b (even for the case b l , b2 --+ 0), although the model is bifurcational with trivial
fundamental path. From eqn (46) it is clear that these parameters have no effect on the
static (divergence) buckling load le.

From Fig. 9 one can also see Hopf bifurcations in the region 0 ~ 11 < 1 when either of
b l or b2 is zero. It is important to note that among these Hopf bifurcations, the ones
physically acceptable are those for 0 ~ '1 < 0.5 since for '1 > 0.5 divergence instability occurs
for lower loads.

By virtue of eqn (55) one can find for given 11 and varying b the maximum load Aer­
This load corresponding to a certain damping ratio b = ber is obtained by the condition
dAjdb = 0 (d2A(ber)jdb2 < 0) which yields

64'1 2(1 + '1 2)l 4
- 3211(7112 + 14'1 + 5)A 3 + 4(22911 2+ 28011+ 25)A 2

-20(87'1+35)l+ 1025 = O. (57)

It can be shown that the minimum positive root which satisfies eqn (57) is

A = 7+11-}8+ 1411-40'1 2

cr 2(1 +11 2) (58)

Note that the latter critical load is identical with that of the corresponding undamped
linear system (Herrmann and Bungay, 1964). Hence it established the important finding
that the critical load of the damped system has, as upper bound, the corresponding load of

a = 1-11
5
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Fig. 9. Hopfbifurcations in the region 0 < '1 < 0.5 when either of h"h 2 is zero.
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Fig. 10. Point attractor for ic = 0.89 (a) and stable limit cycles (b) for A= 0.95 for Yf = 0.48, b , = O.
h,=O.l.

the undamped system. The classical analysis for I] = 0 leads to a divergent motion, while
the present nonlinear analysis shows that the motion is bounded (Kounadis, 1990).

Figure 10 shows two phase-plane portraits corresponding to A = 0.89 (point attractor)
and A = 0.95 (Hopf bifurcation) for an elastic damped model in which dynamic instability
occurs prior to divergence, since A = 0.95 < A(I) = 1.09175. Figure II shows the stable limit
cycles of the compound branching (pseudo-equilibrium) point (1]0' A'O).

Besides local (Hopf) bifurcations one can discover global dynamic bifurcations using
a nonlinear dynamic analysis. The change of their phase portrait is not noticeable in the
neighborhood of any equilibrium point, but can only be discerned on a global scale. Global
bifurcations are not detected in the region of nonexistence of adjacent equilibria (I] < 4/9),
but only in the region of existence of such equilibria occurring always for loads A > All)

(i.e. after divergence instability). They start to appear for I] > 4/9 and their locus extends
a little beyond I] = 0.50 (Fig. 12). A typical phase-plane portrait is shown in Fig. 13.

6. CONCLUSIONS

Using a qualitative and quantitative analysis, the neighborhood of a compound
branching point, being the boundary between static and dynamic instability, is
thoroughly discussed. The following findings are worthy of report:

(I) In the vicinity of this point there exists a small region of adjacent equilibria, where
the loss of stability in cases of vanishing damping may occur via a Hopf (dynamic)

Elastic material

~I =~2 ="II ="12 =0
" =4/9, A =1.5
b l = 0.01, b2 =0.05

Stable limit
cycleS

Fig. II. The phase-portrait of the point (Yfo = 4/9, Ao = 1.5) associated with an unstable origin and
stable limit cycles for hi = 0.01, b, = 0.05.



Static stability analyses of nonconservative systems 2119

____ - Global bifurcation

2.0

... /"=2.0

'""
I , :\

"=0.4/ \ y"=2.0
...............................................l...I... 0,

1.0
"=0

-----------~~s::=:
I

5/90.50.3o 0.3750.4

a =l-TI

Fig. 12. Loci of global bifurcations corresponding to various b (=0,0.4, 1,2).

bifurcation prior to static (divergence) buckling. Hence, the static criterion fails to predict
the actual critical load. If the vanishing damping is replaced by zero damping, the critical
load takes its maximum value coinciding with that of divergence instability.

(2) In this region, which is explicitly determined, in addition to the above findings the
following phenomena are also found:

• An interaction of two consecutive postbuckling modes.
• The critical states of static (divergence) instability may be associated with a double

zero eigenvalue also satisfying the conditions of Hopf (local) bifurcations.
• While the system is perfect with trivial precritical deformation, its critical load is

strongly affected by both the mass distribution and damping ratio.
• The compound branching point is a hybrid or pseudo-equilibrium point since its

response is associated with limit cycles.
• As we pass from the region of adjacent equilibria to the region of nonexistence of

such equilibria there may be a loading discontinuity with a flutter load lower than,
equal to or higher than the static buckling load (contrary to the corresponding
finding of the classical analysis) depending on the damping ratio.

• In the region of adjacent equilibria, in addition to local (Hopf) bifurcations, there
exist global bifurcations established only by nonlinear dynamic analysis. However,
these bifurcations occur for loads higher than the critical ones.

Elastic material
iii = li2 = 11 = 12 = 0
1] = 0.48, A. =2.01
b l =b2 = 0.01

Stable limitj cycles

Fig. 13. Global stable bifurcation with trajectories passing through the saddle of the origin for
YJ = 0.48, A = 2.01 > A" = 2.007, b , = b2 = 0.01.
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• Regardless of whether or not the system loses its stability via divergence or flutter,
the postcritical response is associated either with a point or a limit cycle attractor.
This contradicts the classical analysis which leads to a divergent motion in both
cases.

(3) The postbuckling paths for '1 > 0.5 are independent of each other and the system
exhibits a point attractor.

(4) The loss of stability in the region of nonexistence of adjacent equilibria always
occurs via a Hopf bifurcation.

• The critical flutter load has as upper bound the critical load of the corresponding
undamped system.

(5) There is a considerable variation of the flutter load depending on the mass and
damping ratio in both regions.
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